Resource Recommendation for Intelligent Environments Based on a Multi-aspect Metric
نویسندگان
چکیده
Intelligent environments offer information filled spaces. When trying to navigate among all the offered resources users can be overwhelmed. This problem is increased by the heterogeneous nature of resources in smart environments. Users must choose between a plethora of services, multimedia information, interaction modalities and devices. But at the same time the unique characteristics of smart spaces offers us more opportunities to filter these resources. To help users find the resource that they want and need we have designed a multi-aspect recommendation system that takes into account not only the features of the resource and the user, but also context data like the location and current activity. The developed system is flexible enough to be applied to different resource types and scenarios. In this paper we will describe the identified aspects and how they are merged into a single metric.
منابع مشابه
An Intelligent Algorithm for Optimization of Resource Allocation Problem by Considering Human Error in an Emergency Department
Human error is a significant and ever-growing problem in the healthcare sector. In this study, resource allocation problem is considered along with human errors to optimize utilization of resources in an emergency department. The algorithm is composed of simulation, artificial neural network (ANN), design of experiment (DOE) and fuzzy data envelopment analysis (FDEA). It is a multi-response opt...
متن کاملIntelligent Approach for Attracting Churning Customers in Banking Industry Based on Collaborative Filtering
During the last years, increased competition among banks has caused many developments in banking experiences and technology, while leading to even more churning customers due to their desire of having the best services. Therefore, it is an extremely significant issue for the banks to identify churning customers and attract them to the banking system again. In order to tackle this issue, this pa...
متن کاملImproving Agent Performance for Multi-Resource Negotiation Using Learning Automata and Case-Based Reasoning
In electronic commerce markets, agents often should acquire multiple resources to fulfil a high-level task. In order to attain such resources they need to compete with each other. In multi-agent environments, in which competition is involved, negotiation would be an interaction between agents in order to reach an agreement on resource allocation and to be coordinated with each other. In recent ...
متن کاملAutomatic Hashtag Recommendation in Social Networking and Microblogging Platforms Using a Knowledge-Intensive Content-based Approach
In social networking/microblogging environments, #tag is often used for categorizing messages and marking their key points. Also, since some social networks such as twitter apply restrictions on the number of characters in messages, #tags can serve as a useful tool for helping users express their messages. In this paper, a new knowledge-intensive content-based #tag recommendation system is intr...
متن کاملAn Efficient Approach for Bottleneck Resource(s) Detection Problem in the Multi-objective Dynamic Job Shop Environments
Nowadays energy saving is one of the crucial aspects in decisions. One of the approaches in this case is efficient use of resources in the industrial systems. Studies in real manufacturing systems indicating that one or more machines may also act as the Bottleneck Resource/ Resources (BR). On the other hand according to the Theory of Constraints (TOC), the efficient use of resources in manufact...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012